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Detailed spectrally and spatially resolved radiance has been measured in the Electric
Arc Shock Tube (EAST) facility for conditions relevant to high speed entry into a variety
of atmospheres, including Earth, Venus, Titan, Mars and the Outer Planets. The tests
that measured radiation relevant for Earth re-entry are the focus of this work and are
taken from campaigns 47, 50, 52 and 57. These tests covered conditions from 8 km/s to
15.5 km/s at initial pressures ranging from 0.05 Torr to 1 Torr, of which shots at 0.1 and
0.2 Torr are analyzed in this paper. These conditions cover a range of points of interest for
potential flight missions, including return from Low Earth Orbit, the Moon and Mars. The
large volume of testing available from EAST is useful for statistical analysis of radiation
data, but is problematic for identifying representative experiments for performing detailed
analysis. Therefore, the intent of this paper is to select a subset of benchmark test data
that can be considered for further detailed study. These benchmark shots are intended to
provide more accessible data sets for future code validation studies and facility-to-facility
comparisons. The shots that have been selected as benchmark data are the ones in closest
agreement to a line of best fit through all of the EAST results, whilst also showing the best
experimental characteristics, such as test time and convergence to equilibrium. The EAST
data are presented in different formats for analysis. These data include the spectral radiance
at equilibrium, the spatial dependence of radiance over defined wavelength ranges and
the mean non-equilibrium spectral radiance (so-called “spectral non-equilibrium metric”).
All the information needed to simulate each experimental trace, including free-stream
conditions, shock time of arrival (i.e. x-t) relation, and the spectral and spatial resolution
functions, are provided.

I. Introduction

In recent years, the EAST facility at NASA Ames has been employed for the purpose of obtaining validation
data for radiative heating. The shock tube produces high velocity flows in gases of known composition

and densities relevant to various atmospheric entries. These conditions are achieved by creating a sudden
pressure discontinuity which moves hypersonically into the gas in front of it, in the form of a normal shock
wave. Because of the short time scales involved, the discontinuity does not have time to mix, but rather
compresses the gas as it moves forward, much like a spacecraft will do to the atmosphere during planetary
entry. This shock wave in EAST is therefore assumed to be analogous to the stagnation line behind the bow
shock in an entry scenario. The radiating shock wave can be imaged as it passes through the shock tube,
and separated into different wavelength ranges via spectroscopy. The spectroscopic imaging of the shock is
important as the radiation varies significantly with wavelength. The ability to predict and model both the
non-equilibrium and equilibrium radiance is dependent upon understanding the mechanisms that produce
different spectral features. For the simulation tools that are used to predict radiative heating for a re-entry
vehicle; the shock tube data is used to quantify uncertainty and validate such predictive models, and in some
cases to adjust or update the models.
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II. Description of the EAST Facility

The EAST facility at NASA Ames Research Center was developed to simulate high-enthalpy, real gas
phenomena encountered by hypersonic vehicles entering planetary atmospheres. Experiments are performed
to match flow parameters relevant to flight, such as velocity, static pressure, and atmospheric composition.
EAST has the capability of producing super-orbital shock speeds using an electric arc driver with a driven
tube diameter of 10.16 cm.1,2 The region of valid test gas is located between the shock front and the contact
surface that separates the driver and driven gases. The test duration is defined as the axial distance between
these two points divided by the local shock velocity. The characteristics of the EAST arc driver result in test
durations of approximately 4 - 10 µs. Though short, this test duration is often sufficient to capture the peak
non-equilibrium shock radiation and the decay to equilibrium conditions. Spectrometers, attached to Charge
Coupled Devices (CCDs) are activated when the shocked gas arrives at the location of the test section in the
tube and the spectral and spatial emission of the gas are measured. EAST utilizes four spectrometers per
shot, each associated with four different wavelength ranges. These cameras are referred to as: VUV (∼ 120
– 215 nm), UV/Vis (∼ 190 nm – 500 nm), Vis/NIR (∼ 480 nm – 900 nm), and IR (∼ 700 nm – 1650 nm).

II.A. Test Conditions

Figure 1 shows a comparison of EAST testing conditions with various flight missions that re-entered Earth’s
atmosphere and proposed Mars return missions. Four sets of EAST data are shown, denoted Test 47,1 50,3,4

525 and 57.6 The nominal test conditions for Tests 47 and 50 were chosen to be representative of peak
heating for the Multi Purpose Crew Vehicle’s (MPCV’s) re-entry into Earth’s atmosphere during a lunar
return mission. These conditions correspond to a shock speed of approximately 10 km/s to 10.5 km/s, free
stream pressures ranging from 0.1 Torr to 1 Torr3,4 and a test gas composition of 79% N2 and 21% O2 by mole
(an idealized approximation of Earth’s atmosphere). However, in order to better ascertain the dependency
of the radiation with shock speed, shots were aimed at expanding the testing conditions to encompass speeds
from 8 km/s up to 15.5 km/s, e.g. Test 50 (for shock speeds down to 8 km/s) and Test 52 (for shock speeds
up to 15.5 km/s). This expanded data-set provided a more complete picture to analyze the relationship
between shock speed and emitted radiation and allowed for a more robust comparison with simulations.
Test 57 conducted experiments with an actual air mixture of 78.1% N2, 20.9% O2, 0.9% Ar along with trace
species. Data from these tests may be obtained by contacting the authors or visiting the EAST data storage
website (https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html).
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Figure 1. Comparison of EAST testing conditions to various flight missions that re-entered Earth’s atmosphere and
proposed Mars return missions.

2 of 50

American Institute of Aeronautics and Astronautics



III. Summary of Previous Research

There have been many research efforts in recent years to validate and analyze the EAST experiments.3–12

Some of these previous analyses4,6 have helped identify the benchmark EAST experiments. The following
sections will provide an overview of these works with regard to analysis of both equilibrium and non-
equilibrium radiation.

III.A. Summary of Previous Equilibrium Research

A previous analysis presented simulations of equilibrium radiation measurements obtained in the EAST as a
part of recent testing aimed at reaching shock velocities up to 15.5 km/s.4,5 The goal of these experiments
was to measure the level of radiation encountered during high speed Earth entry conditions. These exper-
iments provided spectrally and spatially resolved data for conditions ranging from 8 to 15.5 km/s at 0.1
and 0.2 Torr. Insights into the agreement between experimental results and simulations (Neqair13,14 and
Hara15,16) were made possible by analyzing integrated equilibrium spectra across a wide range of conditions
and conducting detailed comparisons of the resulting trends.4,5 The results showed that there was generally
excellent agreement between the two codes and EAST data for the UV through IR spectral regions, how-
ever, discrepancies were identified in the VUV. It was concluded that an updated parametric uncertainty for
high speed radiation in air was [9.0%, -6.3%]. Furthermore, due to the nature of the radiating environment
at these high shock speeds, data were presented for phenomena that become increasingly significant with
increasing shock speed. These investigations include analyzing the radiating species emitting ahead of the
shock and the increased significance of radiative cooling mechanisms. Results from this work helped identify
benchmark EAST shots based on the quality of the level of equilibrium radiation measured.

III.B. Non-equilibrium Metrics

For non-equilibrium regions of EAST experiments, a previously defined absolute non-equilibrium metric17

is used to identify benchmark shots, and also used to provide non-equilibrium spectral data. This metric is
computed by integrating the radiance within 2 cm of either side of the shock front, as shown by the red lines
in Fig. 2, and is normalized by the shock tube diameter. For most cases, the shock front is defined as the
location of peak radiance. For higher speed/pressure shots that do not over-shoot equilibrium, the location
is chosen to be the inflection in the radiance as equilibrium is reached. Computing the metric in this manner
has been suggested as a more robust way to conduct a comparison as opposed to using the peak intensity,
since the comparisons are then not bound to experimental resolution limitations such as gate opening times
and spatial smearing due to shock movement. Under optically thin conditions, this integral will represent
the radiance as observed parallel to the direction of the shock. Under optically thick conditions, however,
this integral is not physically meaningful and is simply a way of comparing data corresponding to a given
optical path-length/shock tube diameter.

III.C. Summary of Previous Non-equilibrium Research

For lunar return Earth re-entry velocities between 8 and 11.5 km/s at 0.2 Torr, similar analyses as were
performed for equilibrium were also conducted for non-equilibrium.6 The experiments were aimed at measur-
ing the spatially and spectrally resolved radiance at entry conditions for an approximate Earth atmosphere
(79% N2 : 21% O2 by mole) and a more accurate composition featuring trace species (78.1% N2 : 21.0% O2

: 0.93% Ar by mole). Independent simulations were conducted with two sets of CFD and radiation codes
( Laura.18,19/Hara15,16 and Dplr20–22/Neqair13,14), then compared to the EAST results using non-
equilibrium metrics. Overall, Laura/Hara was shown to under-predict EAST by as much as 40% and
over-predict by as much as 12% depending on the shock speed. Dplr/Neqair was shown to under-predict
EAST by as much as 50% and over-predict by as much as 20% depending on the shock speed. The one
standard deviation scatter in the non-equilibrium EAST results was calculated to be 31%. Results from this
work helped identify benchmark EAST shots based on the non-equilibrium metric analysis.
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Figure 2. Example of the Absolute Non-equilibrium radiance metric used in this work: Integrating the intensity from
2 cm before the shock peak until 2 cm after the shock peak.

IV. Convolution Functions

In order to accurately model the EAST data, simulation results need to be spectrally and spatially
convolved with functions which represent various sources of smearing intrinsic to the experimental set up.
A detailed explanation for the determination of these parameters was previously published,17 so a summary
is presented here.

IV.A. Spectral Convolution Function

Every spectrometer has a spectral broadening function known as the Instrument Lineshape, ILS. The ILS is
determined by the profile of radiation falling on the CCD coupled with the charge spread function of the CCD.
The profile of the radiation falling on the CCD will be determined by the radiation profile passing through
the spectrometer slit coupled with the spread function of the spectrometer optics. This spread function
is also dependent upon the alignment (i.e. focus) of the CCD to the spectrometer. The EAST ILS was
parameterized for ease of implementation in simulation tools.4 The lineshape is determined experimentally
by measuring and fitting atomic lines found in the emission from a spectral calibration lamp. The shape of
the line is a function of several parameters, including the spectrometer, camera, slit width, grating resolution,
wavelength setting and focus. Often the spectrometer CCD focus plays a larger role in determining lineshape
than repeatable parameters such as slit width and grating angle, therefore the lineshape may drift over time
and experience noticeable changes when realignment is performed. With the exception of the IR camera, the
experimentally observed lineshapes are not well described by typical functions, such as triangular, Gaussian,
Lorentzian or Voigt. Consequently, two empirical functions were created to better characterize the ILS; 1)
the square root of a Voigt function (see Equation 1) and 2) a combination of a Gaussian and Lorentzian (see
Equation 2). They are expressed mathematically as follows:

I(x) = (V (x))
1
2 (1)

where V (x) is a Voigt Function and x is the wavelength separation from the line center. This function is
described by two parameters, the Gaussian and Lorentzian widths that go into the Voigt Function.

I(x) =
G(x) + a× L(x)

1 + a
(2)

where G(x) and L(x) are Gaussian and Lorentzian functions and again x is the wavelength separation from
the line center. This function requires three parameters, the Gaussian and Lorentzian line widths and the
ratio a. Here, a is constrained between 0 and 1.

Depending on the specific set-up and settings used, one of the functions may provide a better fit to the
spectral calibration lamp than the other. For each experimental condition, an ILS of either form is obtained,
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however which form is used in the analysis is of little consequence as the functions are normalized to conserve
the area under the curve. The integrated radiance is thus unaffected by this choice. The impact of the choice
of the scan function is shown for calibration images in Fig. 3. Here, the camera signal is displayed as counts
(summed over rows) on a logarithmic scale to highlight the spread of the ILS at low intensities far from
the line center. Also shown for comparison is the best fit Voigt profile for the scan function. It is apparent
that the Voigt profile is inadequate to capture the shape of the line wings. Gaussian or triangular functions
would be even worse. The two proposed profiles, however, better capture the slow decay of intensity away
from the line center. The parameters for the spectral resolution function are given in Appendix C.
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Figure 3. Measurement of Hg calibration lamp for the (a) VUV and (b) Vis/NIR spectrometers. Shown overlaid on
the plots are the best fit instrument and Voigt functions. The instrument functions are defined in the text.

IV.B. Spatial Convolution Function

The spatial resolution of the experiments is restrained by physical limitations and arises from three different
sources.23 First, the resolution of both the collection and spectrometer optics will limit how finely the shock
can be resolved. Second, the CCD itself is subject to charge smearing which will cause adjacent pixels to
share intensity. Finally, the fact that the shock is moving during the exposure time will cause the shock
front to blur on the camera. The first effect may be observed by taking the derivative of a step change in
radiance, (e.g. at the edge of a sharply defined calibration source). It is found that the derivatives on the
ICCD arrays are well fit by the square root of a Voigt function, which was also used to describe the spectral
lineshape.23 The net effect of the three resolution limitations results in a spatial profile that is broadened in
comparison to the physical result. The broadening may be evaluated by convolving predicted data with an
instrument spatial resolution function, SRF, which is itself a convolution of the optical, camera and motion
resolution functions:

Imeas(x) =

∫ +∞

−∞
SRF (∆x)Itrue(x+ ∆x)d∆x

= SRF (x)⊗ Itrue(x) (3)

SRF (x) = fopt(x)⊗ fcam(x)⊗ fmotion(x)

Taking an example of the three functions discussed above, a sample convolution function is given in
Fig. 4, alongside the three individual functions. In this case, it is clear that the optical function is narrower
than the camera and motion functions, which have comparable widths. However, since the camera function
extends over a larger distance, it tends to dominate the convolution. These convolution functions have been
compiled for the EAST data sets23 and detailed in Appendix D.
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Figure 4. Sample convolution for the Vis/NIR Camera

V. Experimental Data

In order to identify benchmark EAST shots, the absolute non-equilibrium metric and equilibrium radiance
was evaluated for each camera for each shot across test campaigns 47, 50, 52 and 57. A line of best fit to
the data was created. Supposing the data to be normally distributed about this line, the shots showing the
least deviation from the fit are selected as benchmark candidates. The results were then cross checked to
find shots that showed favorable agreement across both the non-equilibrium and equilibrium fits. Tables 1
and 2 provide a listing of all the shots that were determined to be benchmark quality. Even though results
from a shot might only specifically call out one camera as benchmark data, it does not mean that results
from the other cameras did not provide useful data. These results from other cameras of benchmark shots
might have only been slightly further off than another shot that was selected.

There were a few instances where additional selection criteria were necessary. Due to the scatter of
the equilibrium results for the VUV camera at 0.1 Torr, the non-equilibrium metric was given precedence
in selecting the benchmark cases. The non-equilibrium metric is also given precedence for shots less than
approximately 10 km/s due to concerns about the level of equilibration obtained in EAST at such conditions.
Figure 5 shows results from a previous analysis (Figs. 7, 9, 11, 13, 15)3 that extracted electron number
density by measuring the broadening of certain atomic lines. The results below approximately 10 km/s show
that the extracted electron number density is significantly greater than equilibrium predictions. Shots with
a low signal-to-noise ratio (typically VUV and IR at low speed), tended to have distorted non-equilibrium
metrics due to noise or baseline offset in the pre-shock region. In these cases, the non-equilibrium metric
was not considered.

Figures 6 to 15 show the benchmark EAST experiments across the four spectrometers typically used
during each EAST experiment. Five spectral ranges are given, which include Deep VUV (117-175 nm,
Figs. 6–7), VUV (122-180 nm, Figs. 8–9), UV/Vis (300-500 nm, Figs. 10–11), Vis/NIR (500-890 nm, Figs. 12–
13 ) and IR (890-1450 nm, Figs. 14–15). The figures are displayed using the same layout for each spectral
range. The radiance profile for the benchmark shots at 0.2 Torr and 0.1 Torr are shown first. In each case,
one of the two ranges is shown as two separate figures in order to encompass a wider range of shock speeds.
The benchmark shots are then highlighted on plots of equilibrium radiance and non-equilibrium metric verses
shock speed for all shots considered in this analysis. The spectral dependence of both equilibrium radiance
and the non-equilibrium metric are given in Appendix A. Appendix C and D gives the parameters necessary
to produce the convolution functions discussed in Section IV for each test. Appendix B gives the distance-
time data for each shock, which may be used for validation of CFD analyses of the full facility. Because the
shock decelerates as it travels down the tube, this information is likely relevant for predicting the state of
the shocked gas. This effect has been discussed previously as a possible reason for measured temperatures
exceeding equilibrium for Mars entry relevant shots24 and electron number densities above equilibrium in
Air,3 see Fig. 5.
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Table 1. Benchmark EAST Shots at 0.1 Torr.

Test Series Shot Number Shock Speed Freestream Pressure Camera

km/s Torr

50 17 9.32 0.1 UV/Vis

50 102 9.71 0.1 Vis/NIR

50 104 10.13 0.1 Vis/NIR

57 22 10.17 0.1 VUV

50 115 10.44 0.1 VUV

50 27 10.87 0.1 UV/Vis

50 106 10.97 0.1 Vis/NIR

50 20 11.11 0.1 VUV

57 34 11.15 0.1 VUV

50 105 11.26 0.1 Vis/NIR

52 1 11.27 0.1 UV/Vis,IR

57 25 11.67 0.1 Vis/NIR

52 2 11.72 0.1 UV/Vis, IR

50 24 11.74 0.1 VUV

50 107 11.86 0.1 VUV

52 5 12.45 0.1 UV/Vis

52 7 13.36 0.1 IR

52 8 13.5 0.1 UV/Vis,Vis/NIR

52 13 14.46 0.1 Vis/NIR

52 15 15.52 0.1 UV/Vis,Vis/NIR,IR
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Figure 5. Ratio of measured electronic number density through Stark broadening and equilibrium calculated values as
a function of velocity and pressure (adapted from Cruden et al.3)
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Table 2. Benchmark EAST Shots at 0.2 Torr.

Test Series Shot Number Shock Speed Freestream Pressure Camera

km/s Torr

50 44 8.05 0.2 Vis/NIR

50 36 9.02 0.2 UV/Vis

57 14 9.53 0.2 VUV

50 59 9.98 0.2 UV/Vis,IR

57 15 10.12 0.2 VUV

57 6 10.13 0.2 Deep VUV

50 57 10.25 0.2 IR

47 37 10.27 0.2 Vis/NIR

50 29 10.29 0.2 VUV,UV

57 16 10.3 0.2 VUV

47 33 10.32 0.2 UV/Vis

57 7 10.44 0.2 Deep VUV

57 8 10.66 0.2 Deep VUV, IR

50 93 10.68 0.2 VUV

50 97 10.81 0.2 IR

50 30 10.92 0.2 Vis/NIR

57 41 11.22 0.2 UV/Vis

57 10 11.36 0.2 IR

57 11 11.50 0.2 Deep VUV

57 37 11.79 0.2 VUV,Vis/NIR

52 19 11.88 0.2 IR

57 40 12.19 0.2 UV/Vis

57 36 12.53 0.2 VUV

52 21 12.87 0.2 IR

52 20 12.89 0.2 Vis/NIR
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The majority of the EAST experiments relevant to Earth entry have been conducted between approxi-
mately 10 and 12 km/s. Due to the large number of experiments in this shock speed range there is increased
confidence in identifying benchmark shots close to the line of best fit. However, due to the relatively low
number of shots outside of this range, the line of best fit can be influenced by just a few experiments. Care
has been taken to select the best shots available in such cases, even if they have been selected from a small
sample size. Furthermore, certain wavelength ranges have fewer experiments. This is true, for instance, of
the deep VUV range (starting at 117 nm).

VI. Conclusion

This paper has examined the substantial number of experiments relevant to high speed Earth re-entry
performed during recent campaigns in the EAST facility. Experiments that showed good shot characteristics,
and agreed well with lines of best fit through the non-equilibrium metric and equilibrium radiance, were
identified as benchmark datasets. As such, this work represents an archival distillation of the best experiments
for recent EAST testing, covering tests 47, 50, 52 and 57. Detailed information has been provided for these
experiments so they may be recreated by simulation tools, used in validation studies, or replicated by other
facilities. Distance-time data for the shock traveling down the facility have also been included for the use in
validation of future full facility CFD simulations. All of the EAST data is available at the following website:
(https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html).
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Figure 6. Deep VUV EAST data.
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Figure 9. VUV EAST data.
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Figure 10. UV EAST data.
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Figure 11. UV EAST data.

14 of 50

American Institute of Aeronautics and Astronautics



0"

0.5"

1"

1.5"

2"

2.5"

3"

0"

20"

40"

60"

80"

100"

120"

140"

0" 2" 4" 6" 8" 10"

Ra
di
an

ce
"(t
hi
n"
lin

e)
,"W

/c
m

2 "s
r"

Ra
di
an

ce
"(t
hi
ck
"li
ne

s)
,"W

/c
m

2 s
r"

Distance,"cm"

T52$20:'12.89'km/s' T57$37:'11.79'km/s' T50$30:'10.93'km/s'

T47$37:'10.32'km/s' T50$44:'8.05'km/s'

465'to'900'nm'
0.2'Torr'

(a) Radiance Profiles at 0.2 Torr

0"

5"

10"

15"

20"

25"

0" 1" 2" 3" 4" 5" 6"

Ra
di
an

ce
,"W

/c
m

2 s
r"

Distance,"cm"

T57$25:'11.67'km/s' T50$105:'11.26'km/s'
T50$106:'10.97'km/s' T50$104:'10.13'km/s'
T50$102:'9.71'km/s'

465'to'900'nm'
0.1'Torr'

(b) Radiance Profiles at 0.1 Torr

0"

20"

40"

60"

80"

100"

120"

140"

0" 1" 2" 3" 4" 5" 6" 7" 8"

Ra
di
an

ce
,"W

/c
m

2 s
r"

Distance,"cm"

T52$15:'15.52'km/s' T52$13:'14.46'km/s' T52$8:'13.5'km/s'

465'to'900'nm'
0.1'Torr'

(c) Radiance Profiles at 0.1 Torr

Figure 12. Vis/NIR EAST data.
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Figure 13. Vis/NIR EAST data.
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Figure 14. IR EAST data.
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Figure 15. IR EAST data.
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A. Appendix - EAST Spectral Radiance

VUV: 0.1 Torr
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Figure A1. T50-20: 11.11 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A2. T50-24: 11.74 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A3. T50-107: 11.86 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A4. T50-115: 10.44 km/s and 0.1 Torr.
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Figure A5. T57-22: 10.17 km/s and 0.1 Torr.
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Figure A6. T57-34: 11.15 km/s and 0.1 Torr.
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Figure A7. T50-29: 10.29 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A8. T50-93: 10.68 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A9. T57-6: 10.13 km/s and 0.2 Torr.
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Figure A10. T57-7: 10.44 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A11. T57-8: 10.66 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A12. T57-11: 11.5 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A13. T57-14: 9.53 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A14. T57-15: 10.12 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A15. T57-16: 10.3 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A16. T57-36: 12.53 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A17. T57-37: 11.79 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A18. T50-17: 9.32 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A19. T50-27: 10.87 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A20. T52-1: 11.27 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A21. T47-33: 10.32 km/s and 0.2 Torr.

0"

10"

20"

30"

40"

50"

60"

70"

320" 340" 360" 380" 400" 420" 440" 460" 480" 500" 520"

Sp
ec
tr
al
"R
ad

ia
nc
e,
"W

/c
m

2 "µ
m
"sr
"

Wavelength,"nm"

T50$29:(10.29(km/s(
0.2(Torr(

(a) Equilibrium

0"

2"

4"

6"

8"

10"

12"

14"

16"

320" 340" 360" 380" 400" 420" 440" 460" 480" 500" 520"

Sp
ec
tr
al
"N
on

eq
ui
lib

riu
m
"M

et
ric

,"W
/c
m

2 "µ
m
"sr
"

Wavelength,"nm"

T50$29:(10.29(km/s(
0.2(Torr(

(b) Spectral Non-equilibrium Metric

Figure A22. T50-29: 10.29 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A23. T50-36: 10.36 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A24. T50-59: 10.36 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A25. T57-40: 10.36 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A26. T57-41: 10.36 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A27. T50-102: 9.71 km/s and 0.1 Torr.
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(a) Equilibrium

0"

5"

10"

15"

20"

25"

30"

450" 500" 550" 600" 650" 700" 750" 800" 850" 900" 950"

Sp
ec
tr
al
"N
on

eq
ui
lib

riu
m
"M

et
ric

,"W
/c
m

2 "µ
m
"sr
"

Wavelength,"nm"

T50$104:(10.13(km/s(
0.1(Torr(

(b) Spectral Non-equilibrium Metric

Figure A28. T50-104: 10.13 km/s and 0.1 Torr.

0"

50"

100"

150"

200"

250"

300"

350"

400"

450" 500" 550" 600" 650" 700" 750" 800" 850" 900" 950"

Sp
ec
tr
al
"R
ad

ia
nc
e,
"W

/c
m

2 "µ
m
"sr
"

Wavelength,"nm"

T50$105:'11.26'km/s'
0.1'Torr'

(a) Equilibrium

0"

10"

20"

30"

40"

50"

60"

70"

80"

450" 500" 550" 600" 650" 700" 750" 800" 850" 900" 950"

Sp
ec
tr
al
"N
on

eq
ui
lib

riu
m
"M

et
ric

,"W
/c
m

2 "µ
m
"sr
"

Wavelength,"nm"

T50$105:'11.26'km/s'
0.1'Torr'

(b) Spectral Non-equilibrium Metric

Figure A29. T50-105: 11.26 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A30. T50-106: 10.97 km/s and 0.1 Torr.
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Figure A31. T52-8: 13.50 km/s and 0.1 Torr.
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(a) Equilibrium
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(b) Spectral Non-equilibrium Metric

Figure A32. T52-13: 14.46 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A33. T52-15: 15.52 km/s and 0.1 Torr.

32 of 50

American Institute of Aeronautics and Astronautics



0"

100"

200"

300"

400"

500"

600"

450" 500" 550" 600" 650" 700" 750" 800" 850" 900" 950"

Sp
ec
tr
al
"R
ad

ia
nc
e,
"W

/c
m

2 "µ
m
"sr
"

Wavelength,"nm"

T57$25:'11.67'km/s'
0.1'Torr'

(a) Equilibrium

0"

20"

40"

60"

80"

100"

120"

140"

450" 500" 550" 600" 650" 700" 750" 800" 850" 900" 950"

Sp
ec
tr
al
"N
on

eq
ui
lib

riu
m
"M

et
ric

,"W
/c
m

2 "µ
m
"sr
"

Wavelength,"nm"

T57$25:'11.67'km/s'
0.1'Torr'

(b) Spectral Non-equilibrium Metric

Figure A34. T57-25: 11.67 km/s and 0.1 Torr.
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Figure A35. T47-37: 10.27 km/s and 0.2 Torr.
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Figure A36. T50-30: 10.92 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A37. T50-44: 8.05 km/s and 0.2 Torr.
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Figure A38. T52-20: 12.89 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A39. T57-37: 11.79 km/s and 0.2 Torr.
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Figure A40. T52-1: 11.27 km/s and 0.1 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A41. T52-2: 11.72 km/s and 0.1 Torr.
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(a) Equilibrium
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(b) Spectral Non-equilibrium Metric

Figure A42. T52-15: 15.52 km/s and 0.1 Torr.
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IR: 0.2 Torr
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(b) Spectral Non-equilibrium Metric

Figure A43. T50-57: 10.25 km/s and 0.2 Torr.

0"

5"

10"

15"

20"

25"

30"

35"

800" 900" 1000" 1100" 1200" 1300" 1400" 1500"

Sp
ec
tr
al
"R
ad

ia
nc
e,
"W

/c
m

2 "µ
m
"sr
"

Wavelength,"nm"

T50$59:'9.98'km/s'
0.2'Torr'
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(b) Spectral Non-equilibrium Metric

Figure A44. T50-59: 9.98 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A45. T50-97: 10.81 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A46. T52-19: 11.88 km/s and 0.2 Torr.
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(a) Equilibrium
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(b) Spectral Non-equilibrium Metric

Figure A47. T52-21: 11.88 km/s and 0.2 Torr.
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(b) Spectral Non-equilibrium Metric

Figure A48. T57-8: 10.66 km/s and 0.2 Torr.
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(a) Equilibrium
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(b) Spectral Non-equilibrium Metric

Figure A49. T57-10: 11.36 km/s and 0.2 Torr.
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B. Appendix - Shock Time of Arrival Data

The shock time of arrival data obtained with PCB’s for all of the benchmark EAST datasets is presented
in Tables B1 to B4.
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C. Appendix - Spectral Resolution Function

The ILS described in Section IV.A. for benchmark tests is given here. There are two lineshapes described.
For measurements below 500 nm, the parameters are for the square root of Voigt function, where:

ILS1(∆λ) =
[V (∆λ;wl, wg)]

0.5

2
∫∞

0
[V (x;wl, wg)]0.5dx

(C1)

where the Voigt function:

V (∆λ;wg, wg) = L(∆λ;wl)⊗G(∆λ;wg) (C2)

is the convolution of Lorentzian and Gaussian functions. The Lorentzian and Gaussian functions are
given as:

L(∆λ;wl) =
π−1

(∆λ
wl

)2 + 1
(C3)

G(∆λ;wg) =
1

wg

√
ln2

π
exp

[
−ln2

(
∆λ

wg

)2
]

(C4)

where wg and wl are the half-width at half-maximum. Note that the forms of L and G are normalized such
that their integral is unity. The denominator in Eq. C1 indicates that the ILS must be similarly normalized.
This is not expressed analytically, and must be done numerically. The parameters entering into the above
expression are given in Tables C1 – C5, in units of nanometers:

Table C1. Instrument Lineshapes for Deep VUV at 0.2 Torr

Test Series Shot Number Velocity, wg wl

km/s

57 6 10.13 0.139 0.0024

57 7 10.44 0.139 0.0024

57 8 10.66 0.139 0.0024

57 11 11.50 0.139 0.0024

Table C2. Instrument Lineshapes for VUV at 0.2 Torr

Test Series Shot Number Velocity, wg wl

km/s

57 14 9.53 0.139 0.0024

57 15 10.12 0.139 0.0024

50 29 10.29 0.084 0.0025

57 16 10.30 0.139 0.0024

50 93 10.68 0.084 0.0025

57 37 11.79 0.139 0.0024

57 36 12.50 0.139 0.0024
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Table C3. Instrument Lineshapes for VUV at 0.1 Torr

Test Series Shot Number Velocity, wg wl

km/s

57 22 10.17 0.139 0.0024

50 115 10.44 0.084 0.0025

50 20 11.11 0.084 0.0025

57 34 11.15 0.139 0.0024

50 24 11.74 0.084 0.0025

50 107 11.86 0.084 0.0025

Table C4. Instrument Lineshapes for UV/Vis at 0.2 Torr

Test Series Shot Number Velocity, wg wl

km/s

50 36 9.02 0.28 0.070

50 59 9.98 0.28 0.070

50 29 10.29 0.28 0.070

47 33 10.32 0.73 0.022

57 41 11.22 0.24 0.033

57 40 12.19 0.24 0.033

Table C5. Instrument Lineshapes for UV/Vis at 0.1 Torr

Test Series Shot Number Velocity, wg wl

km/s

50 17 9.32 0.284 0.070

50 27 10.87 0.284 0.070

52 1 11.27 0.282 0.027

52 2 11.72 0.282 0.027

52 5 12.45 0.282 0.027

52 8 13.50 0.282 0.027

52 15 15.52 0.196 0.016
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Above 500 nm, the second form of the ILS is preferred. This function is a linear combination of Lorentzian
and Gaussian functions. The function normalization is included in the following formula:

ILS2(∆λ) =
G(∆λ;wg) + 10rL(∆λ;wl)

1 + 10r
(C5)

The corresponding parameters are as follows:

Table C6. Instrument Lineshapes for Vis/NIR at 0.2 Torr

Test Series Shot Number Velocity, wg wl r

km/s

50 44 8.05 1.01 2.83 -0.11

47 37 10.27 0.90 4.92 -1.01

50 30 10.92 1.01 2.83 -0.11

57 37 11.79 1.21 1.33 0.47

52 20 12.89 0.84 2.69 -0.43

Table C7. Instrument Lineshapes for Vis/NIR at 0.1 Torr

Test Series Shot Number Velocity, wg wl r

km/s

50 102 9.71 1.01 2.83 -0.11

50 104 10.13 1.01 2.83 -0.11

50 106 10.97 1.01 2.83 -0.11

50 105 11.26 1.01 2.83 -0.11

57 25 11.67 1.48 3.79 -0.74

52 8 13.50 1.01 2.83 -0.11

52 13 14.46 0.84 2.69 -0.43

52 15 15.52 0.84 2.69 -0.43

In the infrared, it is often not possible to fit a Lorentzian component. In this case, a single Gaussian is
used for the ILS and no value is given for wl or r in the table.

Table C8. Instrument Lineshapes for IR at 0.2 Torr

Test Series Shot Number Velocity, wg wl r

km/s

50 59 9.98 2.83

50 57 10.25 1.57 8.46 -0.91

57 8 10.66 0.39 1.35 -0.02

50 97 10.81 2.83

57 10 11.36 0.39 1.35 -0.02

52 19 11.88 2.18

52 21 12.87 2.18
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Table C9. Instrument Lineshapes for IR at 0.1 Torr

Test Series Shot Number Velocity, wg wl

km/s

50 104 10.13 2.83

50 106 10.97 2.83

50 105 11.26 2.83

52 1 11.27 2.18

52 2 11.72 2.18

52 15 15.52 2.18

D. Appendix - Spatial Resolution Function

The spatial resolution function is given as the convolution of three different functions, as follows:

SRF (x) = fopt(x)⊗ fcam(x)⊗ fmotion(x)

Detailed forms of these functions are discussed in [2]. Here we use approximated forms of these functions
defined as follows. For the optics up to 900 nm, fopt is given by a triangular function:

fopt(∆x) =
2

dopt
max

(
1− 2|∆x|

dopt
, 0

)
(D1)

The camera function is given by the same function as ILS1 in Appendix C. The motion function is given
by a square wave with width equal to the product of velocity and gating time.

fmotion(∆x) =

d−1
gate |∆x| < dgate/2

0 |∆x| > dgate/2
(D2)

Values for dgate, dopt and wg, wl are given in Tables D1 – D7 for these three cameras below, in units of
cm.

Table D1. Spatial Resolution Functions for Deep VUV at 0.2 Torr

Test Series Shot Number Velocity, dopt wg wl dgate

km/s

57 6 10.13 0.041 0.061 0.002 0.253

57 7 10.44 0.041 0.066 0.001 0.261

57 8 10.66 0.041 0.067 0.001 0.267

57 11 11.50 0.041 0.081 0.001 0.287

Table D2. Spatial Resolution Functions for VUV at 0.1 Torr

Test Series Shot Number Velocity, dopt wg wl dgate

km/s

57 22 10.17 0.041 0.064 0.001 0.254

50 115 10.44 0.041 0.042 0.003 0.522

50 20 11.11 0.041 0.057 0.000 0.555

57 34 11.15 0.041 0.063 0.004 0.279

50 24 11.74 0.041 0.060 0.000 0.587

50 107 11.86 0.041 0.036 0.005 0.593
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Table D3. Spatial Resolution Functions for VUV at 0.1 Torr

Test Series Shot Number Velocity, dopt wg wl dgate

km/s

57 14 9.53 0.041 0.068 0.001 0.238

57 15 10.12 0.041 0.064 0.002 0.253

50 29 10.29 0.041 0.026 0.063 0.514

57 16 10.30 0.041 0.063 0.001 0.258

50 93 10.68 0.041 0.112 0.007 1.068

57 37 11.79 0.041 0.061 0.007 0.295

57 36 12.50 0.041 0.057 0.004 0.313

Table D4. Spatial Resolution Functions for UV/Vis at 0.1 Torr

Test Series Shot Number Velocity, dopt wg wl dgate

km/s

50 36 9.02 0.041 0.018 0.006 0.226

50 59 9.98 0.041 0.028 0.003 0.499

50 29 10.29 0.041 0.021 0.004 0.257

47 33 10.32 TBD

57 41 11.22 0.041 0.057 0.005 0.112

57 40 12.19 0.041 0.056 0.004 0.122

Table D5. Spatial Resolution Functions for UV/Vis at 0.1 Torr

Test Series Shot Number Velocity, dopt wg wl dgate

km/s

50 17 9.32 0.041 0.021 0.002 0.233

50 27 10.87 0.041 0.023 0.002 0.272

52 1 11.27 0.041 0.016 0.003 0.282

52 2 11.72 0.041 0.016 0.003 0.293

52 5 12.45 0.041 0.016 0.003 0.311

52 8 13.50 0.041 0.018 0.003 0.338

52 15 15.52 0.041 0.018 0.003 0.388

Table D6. Spatial Resolution Functions for Vis/NIR at 0.1 Torr

Test Series Shot Number Velocity, dopt wg wl dgate

km/s

50 44 8.05 0.041 0.047 0.013 0.201

47 37 10.27 TBD

50 30 10.92 0.041 0.063 0.015 0.109

57 37 11.79 0.041 0.072 0.002 0.118

52 20 12.89 0.041 0.022 0.006 0.129
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Table D7. Spatial Resolution Functions for Vis/NIR at 0.1 Torr

Test Series Shot Number Velocity, dopt wg wl dgate

km/s

50 102 9.71 0.041 0.025 0.007 0.097

50 104 10.13 0.041 0.023 0.009 0.101

50 106 10.97 0.041 0.024 0.008 0.110

50 105 11.26 0.041 0.025 0.007 0.113

57 25 11.67 0.041 0.052 0.005 0.117

52 8 13.50 0.041 0.020 0.006 0.135

52 13 14.46 0.041 0.022 0.006 0.145

52 15 15.52 0.041 0.022 0.007 0.155

For the infrared camera, the optical function is taken to be a trapezoid :

fopt(∆x) =
2dopt,2

d2
opt,2 − d2

opt,1

min

(
1− dopt,1

dopt,2
,max

(
1− 2|∆x|

dopt,2

)
, 0

)
(D3)

where dopt,1 and dopt,2 are the two bases of the trapezoid. The camera shape is taken to be a Gaussian
with half-width wg. Values of dopt, dgate and wg for the infrared cameras are given in Tables D8 and D9.

Table D8. Spatial Resolution Functions for IR at 0.1 Torr

Test Series Shot Number Velocity, dopt1 dopt2 wg dgate

km/s

50 59 9.98 0.313 0.128 0.140 0.499

50 57 10.25 0.313 0.128 0.141 0.513

57 8 10.66 0.313 0.128 0.119 1.045

50 97 10.81 0.313 0.128 0.132 1.081

57 10 11.36 0.313 0.128 0.116 1.113

52 19 11.88 0.313 0.128 0.068 1.188

52 21 12.87 0.313 0.128 0.072 1.287

Table D9. Spatial Resolution Functions for IR at 0.1 Torr

Test Series Shot Number Velocity, dopt1 dopt2 wg dgate

km/s

50 104 10.13 0.313 0.128 0.103 1.013

50 106 10.97 0.313 0.128 0.095 1.097

50 105 11.26 0.313 0.128 0.085 1.126

52 1 11.27 0.313 0.128 0.111 1.127

52 2 11.72 0.313 0.128 0.111 1.172

52 15 15.52 0.313 0.128 0.075 1.552
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